Synthesis of a Ring Fragment of $\mathbf{9} \alpha, 11 \alpha$-Thiathromboxane $\mathbf{A}_{\mathbf{2}}$. Procedure for Bond $\mathbf{C}^{1}-\mathbf{C}^{2}$ Cleavage in Monosaccharides by an Example of D-Glucose 2-Deoxy-3-mesyl Derivative

R. V.Bikbulatov, R. R. Akhmetvallev, F. A. Akbutina, L. V. Spirikhin, and M.S. Miftakhov
Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, Ufa, Russia

Received November 22, 2002

Abstract

C-Allyl-1-S-acetyl-2,4-dideoxy-3-O-mesyl-6-O-methoxymethyl-1-sulfanyl- α, β-D-arabinohexopyranoside treated with $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NNa}$ in benzene at room temperature affords a bicyclic product resulting from intramolecular cyclization, and at treatment with a system $\mathrm{MeONa}-\mathrm{MeOH}$ at heating suffers fragmentation furnishing ($2 S, 3 S$)-1-methoxymethyloxy-3-vinyl-5-hexen-2-ol.

In attempt to perform intramolecular cyclization of anomeric (3:2) glucose thioacylals (I) by treatment with MeONa in MeOH aiming at preparation compound II as a model of the $9 \alpha, 11 \alpha$-thiathromboxane $\mathrm{A}_{2}[1,2]$ we obtained a remarkable fragmentation product, diol III. This transformation occurred stepwise. First the acetylthioester function of I readily hydrolyzed at room temperature providing sulfanylpyran (IV) that at heating to $\sim 50^{\circ} \mathrm{C}$ gradually transformed into dienol III. Compound III has been detected by TLC, and it can be separated as individual substance.

Note that without heating of the mixture $\left(20^{\circ} \mathrm{C}\right.$, 12 h) only trace amounts of products originating from fragmentation (III) and cyclization (II) were detected.

We succeeded in preparation of compound II in a moderate yield at the use sodium hexamethyldisil-
azide in benzene to effect the thietane ring closure. The reaction was carried out at room temperature till complete consumption of the initial compound (TLC monitoring). When t-BuOK in THF was attempted as a cyclization agent for compound I we observed only significant tarring and formation of dienol III in a small yield.

In the reactions described alongside the demonstrated possibility to build up the ring fragment of the $9 \alpha, 11 \alpha$-thiathromboxane A_{2} also conversion $\mathrm{I} \rightarrow \mathrm{III}$ is obviously interesting from the synthetic viewpoint.

The conversion discovered may be classed as a new thia version of Grob fragmentation [3, 4] whose driving force is a formation of thioformal function in intermediate \mathbf{V} facilitated by ejection of a leaving mesyl group.

It should be mentioned in conclusion that a transformation similar to I \rightarrow III we already observed before: Anomeric methyl-3-O-mesylglycosides VIII at heating in a mixture aqueous $\mathrm{HCl}-\mathrm{THF}$ also furnished fragmentation product IX [5]. These results indicate a certain general trend in the cleavage of the $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond in 2-deoxy-3-O-mesyl derivatives of glycosides. This process can be applied in synthesis to building chiral blocks resembling compound III.

EXPERIMENTAL

IR spectra were recorded on spectrophotometers UR-20 and Specord M-80 from films or mulls in mineral oil. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were registered on spectrometer Bruker AM-300 at operating frequencies 300 and 75.47 MHz respectively from solutions in CDCl_{3}. TLC was performed on Silufol UV 254:366, visualizing of spots was carried out by iodine vapor, calcination, or treating the plates with solution of anisaldehyde and sulfuric acid in ethanol at the ratio 1:0.5:10 followed by heating to 120$150^{\circ} \mathrm{C}$. The optical rotation was measured on Perkin Elmer 141 instrument.

4-C-Allyl-1-S-acetyl-2,4-dideoxy-3-O-mesyl-6-O-methoxymethyl-1-sulfanyl- α, β-D-arabino-hexopyranoside (I). To a solution of $0.2 \mathrm{~g}(0.62 \mathrm{mmol})$ of compound VII in 5 ml of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature while stirring was added 0.6 ml $(0.8 \mathrm{mmol})$ of methoxymethyl chloride and 1.1 ml $(0.8 \mathrm{mmol})$ of diisopropylethylamine. The reaction mixture was stirred for 2 h , then washed in succession with cold water and saturated NaCl solution, dried on MgSO_{4}, and evaporated. The residue was subjected to column chromatography on silica gel (eluent ethyl acetate-hexane, 1:2) to isolate 0.19 g (82%) of anomeric 3:2 mixture of oily compound \mathbf{I}. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 1.95- $2.10 \mathrm{~m}(2 \mathrm{H})$, $2.20-2.40 \mathrm{~m}(3 \mathrm{H}), 2.31(2.36) \mathrm{s}\left(3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.01$
(3.03) s $\left(3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.32 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.60-$ $3.80 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{H}^{5}, 2 \mathrm{H}^{6}\right), 4.60 \mathrm{~s}\left(\mathrm{OCH}_{2} \mathrm{O}\right), 4.80 \mathrm{~m}(1 \mathrm{H}$, $\left.\mathrm{H}^{3}\right), 5.10-5.20 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.80 \mathrm{~m}(1 \mathrm{H}, \mathrm{CH}=)$, $6.09 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{1}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: 30.10 (30.42) $\left(\mathrm{CH}_{2}\right), 30.51(31.19)\left(\mathrm{COCH}_{3}\right), 37.97\left(\mathrm{C}^{2}\right)$, $38.94\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 39.89(40.45)\left(\mathrm{C}^{4}\right), 55.38\left(\mathrm{OCH}_{3}\right)$, 66.73 (66.78) ($\left.\mathrm{C}^{6}\right), 74.12$ (76.14) (C^{1}), 76.66 (78.14) $\left(\mathrm{C}^{5}\right), 78.42(78.62)\left(\mathrm{C}^{3}\right), 96.57\left(\mathrm{OCH}_{2} \mathrm{O}\right), 118.72$ (118.80) $\left(\mathrm{CH}_{2}=\right), 132.64$ (132.69) $(\mathrm{CH}=), 192.39$ (192.54) (CO).
($1 R, 3 S, 4 R, 5 R$)-4-Allyl-3-methoxymethoxy-methyl-2-oxa-6-thiabicyclo[3.1.1]heptane (II). To a stirred solution of $0.2 \mathrm{~g}(0.54 \mathrm{mmol})$ of compound \mathbf{I} in 1 ml of benzene at room temperature under argon atmosphere was added $0.11 \mathrm{~g}(0.6 \mathrm{mmol})$ of sodium hexamethyldisilazide. After 10 h 5 ml of water was added to the reaction mixture, the products were extracted into dichloromethane $(3 \times 5 \mathrm{ml})$, the combined organic extracts were dried on MgSO_{4}, evaporated, the residue was subjected to column chromatography on silica gel deactivated with triethylamine (eluent ethyl acetate-hexane, $1: 2$) to yield $50 \mathrm{mg}(20 \%)$ of oily compound II. $[\alpha]_{D}^{20}+220^{\circ}$ (c 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 2.10 d $\left(1 \mathrm{H}, \mathrm{H}^{7 B}, J 10 \mathrm{~Hz}\right), 2.20-2.30 \mathrm{~m}_{5}\left(3 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{H}^{4}\right)$, $3.38 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.42$ d.t $\left(1 \mathrm{H}, \mathrm{H}^{5}, J 1\right.$ and 5 Hz$)$, 3.53 d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{7 A}, J 5\right.$ and 10 Hz$), 3.72$ d.d $(1 \mathrm{H}$, $\mathrm{OCH}_{2}, J 5$ and 11 Hz$), 4.38 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{3}\right), 4.68 \mathrm{~d}$ $(1 \mathrm{H}, J 6.4 \mathrm{~Hz})$ and $4.70 \mathrm{~d}(1 \mathrm{H}, J 6.4 \mathrm{~Hz})\left(\mathrm{OCH}_{2} \mathrm{O}\right)$, $5.00-5.10 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.38$ d.d $\left(1 \mathrm{H}, \mathrm{H}^{1}, J 3\right.$ and 5 Hz,$), 5.70-5.85 \mathrm{~m}(1 \mathrm{H}, \mathrm{CH}=) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $35.84\left(\mathrm{CH}_{2}\right), 42.86\left(\mathrm{C}^{7}\right), 46.99\left(\mathrm{C}^{4}\right)$, $47.19\left(\mathrm{C}^{5}\right), 55.25\left(\mathrm{OCH}_{3}\right), 66.34\left(\mathrm{CH}_{2} \mathrm{O}\right), 76.36$ $\left(\mathrm{C}^{3}\right), 85.98\left(\mathrm{C}^{l}\right), 96.58\left(\mathrm{OCH}_{2} \mathrm{O}\right), 117.47\left(\mathrm{CH}_{2}=\right)$, 135.25 ($\mathrm{CH}=$).
(2S,3S)-1-Methoxymethyloxy-3-vinyl-5-hexen-2$\mathbf{o l}$ (III). To a stirred solution of $0.2 \mathrm{~g}(0.54 \mathrm{mmol})$ of compound I in 1 ml of MeOH at room temperature was added a solution of $30 \mathrm{mg}(0.6 \mathrm{mmol})$ of MeONa in 0.5 ml of MeOH . In 15 min the reaction mixture was heated to $55^{\circ} \mathrm{C}$, and the stirring was continued for about 1 h more. To the reaction mixture 5 ml of water was added, and the reaction product was extracted into dichloromethane ($3 \times 5 \mathrm{ml}$). The combined organic extracts were dried on MgSO_{4}, the solvent
was evaporated, and the residue was subjected to column chromatography on silica gel (eluent ethyl acetate-hexane, $1: 8$) to isolate $50 \mathrm{mg}(50 \%)$ of oily dienol III. $[\alpha]_{D}^{20}+15^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $2.20-2.35 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}\right), 3.40 \mathrm{~s}$ $\left(\mathrm{OCH}_{3}\right), 3.48$ d.d $\left(1 \mathrm{H}, \mathrm{H}^{1 B}, J 8\right.$ and 10 Hz$), 3.63$ d.d $\left(1 \mathrm{H}, \mathrm{H}^{1 A}, J 3\right.$ and 10 Hz$), 3.79 \mathrm{~m}\left(\mathrm{H}^{2}\right), 4.66 \mathrm{~s}$ $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 5.00-5.20 \mathrm{~m}\left(4 \mathrm{H}, 2 \mathrm{CH}_{2}=\right), 5.77 \mathrm{~m}(2 \mathrm{H}$, $2 \mathrm{CH}=) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $35.64\left(\mathrm{C}^{4}\right)$, $46.61\left(\mathrm{C}^{3}\right), 55.41\left(\mathrm{OCH}_{3}\right), 71.45\left(\mathrm{C}^{1}\right), 71.72\left(\mathrm{C}^{2}\right)$, $97.02\left(\mathrm{OCH}_{2} \mathrm{O}\right), 116.26,117.30\left(\mathrm{C}^{6}, \mathrm{CH}_{2}=\right)$, 136.47, $137.60\left(\mathrm{C}^{5}, \mathrm{CH}=\right)$.

4-C-Allyl-1-S-acetyl-2,4-dideoxy-3-O-mesyl-1-sulfanyl- α, β-D-arabino-hexopyranoside (VII). To a mixture of $0.5 \mathrm{~g}(2.02 \mathrm{mmol})$ of mesylate VI [5] and $0.3 \mathrm{~g}(4 \mathrm{mmol})$ of ethanethioic acid at room temperature was added $0.18 \mathrm{~g}(2.02 \mathrm{mmol})$ of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. The mixture was stirred for 4 h , then $0.5 \mathrm{~g}(5 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ was added, and the reaction product was extracted into dichloromethane $(3 \times 5 \mathrm{ml})$. The combined organic extracts were dried on MgSO_{4}, the solvent was evaporated, and the residue was subjected to column chromatography on silica gel (eluent ethyl acetate-hexane, $1: 1$). We isolated 0.37 g (57\%) of
α, β-anomeric ($3: 2$) mixture of oily compound VII. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 1.90-2.10 m (2H), 2.20$2.40 \mathrm{~m}(4 \mathrm{H}), 2.33(2.36) \mathrm{s}\left(3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.04(3.06)$ $\mathrm{s}\left(3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.60-3.80 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{H}^{5}, 2 \mathrm{H}^{6}\right), 4.78 \mathrm{~m}$ $\left(1 \mathrm{H}, \mathrm{H}^{3}\right), 5.10-5.20 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}=\right), 5.77 \mathrm{~m}(1 \mathrm{H}$, $\mathrm{CH}=), 6.08$ d.d $\left(1 \mathrm{H}, \mathrm{H}^{1}, J 2\right.$ and 5 Hz$) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $30.19(30.71)\left(\mathrm{CH}_{2}\right), 30.62(31.26)$ $\left(\mathrm{COCH}_{3}\right), 37.55(37.90)\left(\mathrm{C}^{2}\right), 38.97\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right)$, 40.07 (40.41) (C^{4}), 62.19 (62.48) ($\left.\mathrm{C}^{6}\right), 75.16$ (76.26) $\left(\mathrm{C}^{1}\right), 76.66(78.03)\left(\mathrm{C}^{5}\right), 78.16(79.79)\left(\mathrm{C}^{3}\right), 118.72$ (118.80) $\left(\mathrm{CH}_{2}=\right), 132.84(132.97)(\mathrm{CH}=), 192.52$ (193.01) (CO).

REFERENCES

1. Ohuchida, S., Hamanaka, N., Hashimoto, S., Hayashi, M., Tetrahedron Lett, 1982, vol. 23, p. 2883.
2. Kale, V.N., and Clive, D.L.J., J. Org. Chem, 1984, vol. 49, p. 1554.
3. Grob, C.A. and Shiess, P.W., Angew. Chem., 1966, vol. 79, p. 1.
4. Grob, C.A., Angew. Chem., 1968, vol. 81, p. 543.
5. Akhmetvaleev, R.R., Bikbulatov, R.V., Belogaeva, T.A., Akbutina, F.A., Miftakhov, M.S., Zh. Org. Khim., 2002, vol. 38, p. 1277.
